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NASF Scientific Achievement Award Winner for 2007:
Dr. E. Jennings Taylor

The NASF Scientific Achievement Award is the Association's
most prestigious award. [ts purpose is to recognize those whose
outstanding scientific contributions have advanced the theory and
practice of electroplating, metal finishing and allied arts; have
raised the quality of products and processes; or have advanced the
dignity and status of the profession.

Dr. E. Jennings Taylor, Founder, Chief Technical Officer and
Intellectual Property Director at Faraday Technology, Inc.,
Clayton, Ohio, was selected as the 2007 recipient of the award,
The announcement was made at SUR/FIN 2007 in Milwaukee,
Wisconsin. His selection was very well deserved, and he joins a
list of esteemed technologists in the field of surface finishing,

He has been a leader in several facets of surface finishing research,
including metal deposition and several related areas. His work has
pioneered the application of non-traditional current waveforms to
enhance existing processes and technologies, opening new possi-
bilities for the science and the industry.

Specifically, he has been instrumental in taking the concept of
using non-direct current in electrochemical processes to fruition.
Ower the vears, enthusiasm for pulse plating, the precursor of what
Dr. Taylor has researched, has borne mixed results and had seen
little use. A concept of more complex waveforms to enhance and
expand electrochemical processes had been proposed but with little
follow through. Dr. Taylor took the concept, studied and applied it
to the point where it is viable tool that has a major impact of sur-
face finishing technology. Using the concept of “electrically-medi-
ated waveforms,” Dr. Taylor has been the driving force in apply-
ing these current forms to electroplating to enhance or otherwise
control deposit structure, properties, uniformity and distribution
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into geometrically difficult areas, The concept has been success-
fully applied to hard trivalent chromium, electroforming, printed
circuitry, fuel cells, nanomaterials and micro-electromechanical
systems (MEMS). Beyond deposition, Dr. Taylor has expanded
herizons to provide significant enhancements in arveas of waste
disposal, landfill recovery and ion exchange.

In addition, through founding his company he has successfully
continued to provide the valuable need for industrial research labo-
ratories devoted to surface finishing research and development.
The highly regarded internal corporate research laboratories of
years past have declined precipitously, and Dr, Tavlor’s company
has provided continuance to this necessary type of resource, in a
new model, in the middle of the spectrum between academia and
industry.

As Chairman of the NASE/AESF Foundation Research Board, he
has revolutionized the operations of the NASF Research program,
streamlining procedures and guiding important research. Looking
to the future, he has placed equal emphasis on the students doing
research as well as the research itself, assuring future R&D human
resources for the science of surface finishing.

Dr. Taylor delivered the 2008 William Blum Memorial Lecture at
SUR/FIN 2008 in Indianapolis, Indiana. His talk was very interest-
ing and informative, and was a towr de force of today’s applications
for pulse and pulse-reverse applications to electrochemical pro-
cesses - not just electroplating, but electropolishing, electrodeburr-
ing, electroetching and electrophoretic deposition, among others.
What follows is a written version of the lecture that Dr. Taylor so
ably delivered at SUR/FIN 2008,
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Adventures in
Pulse/Pulse Reverse Electrolytic Processes:
Explorations and Applications in Surface Finishing

Dr. E. Jennings Tavlor
Faraday Technolagy, Inc., Clayton, Ohio, [JSA

Recipient of the 2007 William Blum NASF Scientific Achievement Award

This paper focuses on the application of pulse/pulse reverse
(P/PR) electrolytic processes to problems of relevance to
the surface finishing industry. After a brief introduction to
the concept and principles of P/PR electrolysis, 1 discuss
the importance of electrolytic cell design in establishing a
uniform hydrodynamic boundary layer. | then focus on past
developments and current applications of P/PR electrolysis
at Faraday Technology, including (1) cathodic processes
for electrodeposition and electrophoretic deposition, (2)
anodic processes for electrodeburring, electropolishing and
electroetching and (3) processes for electro-assisted ion
exchange.

Introduction

After it was announced at SUR/FIN 2007 that [ was the recipient of
the 2008 Scientific Achievement Award, named in honor of William
BElum, I was extremely humbled and somewhat overwhelmed. As 1
perused the previous winners of this very prestigious award, many
of whose works are familiar to me, [ again felt humbled. | say this
because | have had the benefit of working and leaming from many
colleagues and collaborators, both past and current, in the area of
P/PR. electrolysis. | hope to acknowledge all of my colleagues /
collaborators at the conclusion of this manuscript,

My first introduction to P/PR electrolysis was as a graduate
student while conducting my dissertation research at Brookhaven
Mational Laboratory and I first begin working in the area while
employed at Physical Sciences Inc. From these initial forays, 1 had
the good fortune and family support to found Faraday Technology,
Inc. in 1991, whose audacious vision was and stll is:

“... to be fnown as the company that changed the focus of electro-

chemical technologies from the art of complex chemisiries to the
science of PIPR eleciric fields ...”

December 2008 = Plating & Surface Finishing

Cwur approach has been coined “Electrochemical Magic of a
Different Kind.™

At Faraday, we have the freedom to explore our vision for FPE
clectrolysis, as long as we can convince people to fund our ideas
for their applications. The guid pro guo o commencial company
funding is that in return, they have the exclusive rights associated
with the /PR developments. Consequently, intellectual property
in the form of patents and know-how plays an important part in
our strategy and [ cite them below as appropriate. After seventeen
years of commercial and government-sponsored rescarch, twenty-
one ssued LS. and five foreign patents, numerous licensess and
following the acquisition of Faraday by Physical Sciences, | am
pleased to say the vision is indeed alive and well!

Although the focus of our activities is the development of FPR
electrolysis processes, an important and often forgotten consider-
ation is the design of the electrolytic apparatus or cell. As depicted
in Fig. 1, the cell geometry is the foundation of our process devel-
opment. In fact, [ submit that cell design considerations are often
neglected when evaluating process parameters and a poor cell
design often overshadows an otherwise superior process.

Critical to our development of P/PR electrolytic process pamam-
eters was the seminal work by Puippe and Leaman, published by
the American Electroplaters and Surface Finishers Society, Theory
anel Practice of Pulve Plating * Although out of print, several well-
worn copies of this tome grace the Faraday laboratories.

* Corresponaiing autfoor:
D, B, Jennings Tavlor
0 & 1P Direcior
Faraday Technology. Tne.
315 Huls Drive
Clayrov, O 43315
Phone: (937) 8367749
Fax: (237} 836-0498
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Since the combination of FPR electrol ysis waveforms to achieve
a given average current density is infinite, over the vears we have
developed some simplifying assumptions and guiding principles
regarding the development of F/PR clectrolysis applications.

P/PR electrolysis: guiding principles

As shown in Fig. 2, the generalized PY/PR waveform consists of a
forwand modulation (shown as cathodic) with a cathodic current
density, i, a cathodic on time, r, a reverse modulation (shown as
anodic) with an anodic current density, { , an anodic on time, ¢ and
an off-time, ¢, Note, an additional off time between the forwand
and reverse modulation is not depicted for simplicity. The sum of
the cathodic and anodic on-times and the off-time is the period, T,
of the modulation and the inverse of the period is the frequency,
. of the modulation. The cathodic, ¥, and anodic, ¥, duty cycles
are the ratios of the respective on-times to the charge modulated
period. The average current density (f, ) or net electrodeposition
rte is given by;

I =iy

aver [l

=iy (1)

Just as there are infinite combinations of height, width and
length to obtain a given velume, in P/PR processes there are
unlimited combinations of peak current densities, duty cycles and
frequencies to obtain a given electrolysis rate. These additional
parameters provide the potential for much greater process/product
contral versus DC plating,

Mass transport in P/PR electrolysis is a combination of steady
state and non-steady state diffusion processes, Cheh and cowork-
ers* previously discussed the theory of mass transport with respect
to pulse electrolysis. In steady state DC electrolysis, & is a time-
invariant gquantity for a given clectrode geometry and hydrody-
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namic conditions. In PR electrolysis, however, & varies from O at
the beginning of the pulse to its steady siate value, when the Nernst
diffusion layer is fully established. The corresponding diffusion
limiting current density would then be equal to an infinite value at
f = [} and decreases to a steady state value of the DC limiting cur-
rent density. The advantage of F/PR electrolysis is that the cument
can be interrupted before & has a chance to reach the steady-state
value. This allows the reacting ions to diffuse back to the electrode
surface and replenish the surface concentration to its original value
before the next current modulation. Therefore, the concentration
of reacting species in the vicinity of the electrode pulsates with the
frequency of the modulation.

Forward Forward
(-)  Imodulation mochulation
Cathodie
i
3 Offtime .
E [ » Time
- I I
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Anodie v
(+) e
fa
Reverse
modulation

Figure 2—Generic representation af VPR electrolviis waveform.
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Under pulse electrolysis, Ibl and colleagues®™™ proposed a
“duplex diffusion layer” consisting of a pulsating layer, &, and a
statiomary layer, §. Modeling work by Landolt has also suggested
the existence of a pulsating diffusion layer.® Since the thickness of
the pulsating diffusion layer is determined by the waveform param-
eters, we call this layer the “electrodynamic diffusion layer.™ By
assuming a linear concentration gradient across the pulsating diffu-
sion layer and conducting a mass balance, Thl derived the pulsating
diffusion layer thickness (EF} as:®

8 =(2D1 )" (2)

and when the pulse on-time is equal to the transition time, r, the
concentration of reacting species at the interface drops to zero pre-
cisely at the end of the pulse:

r = ((nF) C, "D)/2i 2 (3)

More recently, Yin,'" using a similar approach as Ibl, derived
the same equation for the pulsating diffusion layer for “pulse-with-
reverse” plating.

The key points used in our development of a P/PR electrolysis
process are (1) the electrodynamic diffusion layer thickness is
proportional to the pulse on-time, and (2) the transition time is
inversely proportional to the current. Further, note that the on time
is directly proportional to the duty cyvele and inversely proportional
to the frequency.

We consider two additional important aspects when designing a
P/PR electrolysis process. The first is whether the current distribu-
tion is controlled by primary (geometrical}, secondary (kinetic) or
tertiary {mass transport) considerations. For example, if the wave-
form is designed so that the pulse on time is much longer than the
transition time, the tertiary current distribution will be an impor-
tant factor in metal distribution. The addition of kinetic or tertiary
effects tends to make the current distribution more uniform, as
compared to primary current distribution,

When tertiary current distribution effects are important, addi-
tional criteria that influence current distribution are the concepts
of macroprofile and microprofile. In a macroprofile, the roughness
of the surface is large compared with the thickness of the diffusion
layer, and the diffusion layer tends to follow the surface contour,
Under mass transport or diffusion control, a macroprofile results in
a uniform current distribution or a conformal deposit during plat-
ing. In a microprofile, the roughness of the surface is small com-
pared with the thickness of the diffusion laver. As shown in Figs,
3a and b, pulse electrolysis can convert a macroprofile to a smaller
macroprifile and a microprofile to a macroprofile, respectively.

Ouwr final “guiding principle” regarding the exploration of
applications for P/PR electrolysis involves strict application of the
scientific method by testing assumptions. Specifically, much of the
prior art, P/PR electrolysis took process chemistries developed for
direct current (voltage) processes and applied pulse waveforms.
However, we asked two questions:

I, Why should we expect PIPR elecirolysis processes to use the
samte cliemistries in ferms of elecirolytes and additives as those
developed for DC processes?

2. In fact, do PIPR electrolysis processes require anyiliing more
than simple electrolyte and additive chemistries?

Consequently, our approach to the exploration of P/PR elec-
trolysis applications beging with simple electrolytes and easy 1o
control additives.

Electrolytic cell for uniform hydrodynamic
boundary layer

As noted above, the design of the electrolytic apparatus is critical
to the development of PPR processes, as well as conventional pro-
cess technology. Masking is an important geometric consideration
for electrolytic apparatus design and we presented a simple model
for puidance." In addition, conventional agitation approaches tvpi-
cally use airfinert gas sparging or eductors impinging on the work-
piecce with coefficients of variation of 14 and 18%, respectively, for
a rectangular workpiece of 450 x 600 mm."

A design developed at Faraday utilizes eductors to avoid the
issues associated with non-uniform gas bubble size in sparging
approaches. However, in our approach, the eductor flow does not
directly impinge upon the workpicee as shown in Fig. 4.'%" With
this flow scheme, we have demonstrated coefficient of variation
of 4 to 5% for 200 mm wafer package and 450 x 600 mm circuit
board substrates, respectively, In addition, we have measured
boundary layers approaching 10 wm in thickness using limiting
CUITENt MEASUTEMENLS.

Another design for horizontal electrolytic processes uses a
rotating wafer with vertical movement to compensate for terminal
effects due 1o a minimally conductive seed layer." For this design,
shown in Fig. 5, we demonstrated coefficient of variation of 4 o
6% and a boundary layer thickness of ~34 ym.'

(2)
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Figure 3= Linder pulse clectrolysis: (a) Macroprafile converted fo a smaller macroprofile and (B) Microprofile converted te a macroprofile.
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P/PR cathodic electrodeposition processes

Figure 6 depicts a generalized PPR electrolysis waveform for
electrodeposition applications where the “forward” cycle is
cathodic and the “reverse” cycle is anodic and the net process is
cathodic. In addition to the current distribution issues discussed
above in terms of macro and microprofiles and the electrodynamic
boundary layer, we tune the P'PR waveform reverse (anodic) cyele
te consume the nascent hydrogen generated in many cathodic pro-
cesses, As discussed below, this is an important enabling function
of PIPR electrolysis for certain applications.

An initial application we investigated for P/PR electrolysis
involved metallization of interconnects for printed circuit boards
and electronic packages. The main challenge for these applica-
tions is controlling the current distribution in order to prevent
“dog-boning,” f.e, to obtain good throwing power. While throw-
ing power is generally addressed using plating baths containing
difficult-to-control additives such as levelers and brighteners, we
used the P/PR waveform to control the throwing power. As shown
in Fig. 7 for the test panel with various features, we obtained good
throwing power for plated through-holes and pattern plating over
a range of feature sizes, Cur approach generally used the concepts
described above for microprofile and macroprofile boundary layers
and tuning the forward (cathodic deposition) and reverse (anodic
dissolution) waveform characteristics in order to yield the net result
of conformal coating or filling of the subject interconnects.'™*
Another advantage of F'PR electrolysis is that for electronic pack-
ages having different feature sizes, a sequence or train of wave-
forms can be delivered to address the range of features, "4

Another important property of P/PR electrolysis related to elec-
tromic packages is the ductility of the resulting deposit. In Fig, 8,
we present stress/strain data for copper foils prepared from a com-
monly used chemical additive bath using a conventional process at

the Naval Surface Warfare Center - Crane (NSWC-Crane) Indiana
and data from a simple chemical bath using a P/PR waveform
sequence developed at Faraday, We observed equivalent yield
strength and clongation with the PF/PR prepared samples showing
a standard deviation of ~2% for elongation compared to ~6% for
the conventionally prepared samples.™ We demonstrated the versa-
tility of P/PR electrolysis with semiconductor applications where
the feature sizes are typically less than 0.25 pm and microprofile
boundary layers are typically operative. A representative set of
results is presented in Fig, 9.2

Another application for /PR electrolysis is the electrodeposition
of thick chromium coatings from an environmentally-friendly tri-
valent chromium plating bath. Current processes for trivalent chro-
mium are limited to thin decorative applications, We speculated
that this was due to the cathodic generation of hydrogen during
trivalent chromium plating. Based on this assumption, we success-
fully demonstrated that we could plate thick chromium coatings
from trivalent baths using P'PR electrolysis. We speculate that the
reverse (anodic) cycle consumes the nascent hydrogen and allows
the deposition to continue.™* Although the chromium deposits
prepared from PYPR electrolysis had a thickness equivalent o
those from a standard hexavalent chromium bath, we observed
poor properties in terms of wear and corrosion resistance. From
cross-section data, we attributed these poor properties to continu-
ous cracks through the coating to the substrate surface. Although
chromium prepared from hexavalent processes also exhibits
cracks, they are discontinuous. Consequently, we used a looping
P/PR waveform in order to interrupt the electrodeposition process
with the idea of eliminating or reducing the contiguous cracks. In
this manner, we demonstrated a significant reduction in contiguous
cracks, as shown in Fig, 10.%#
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Another application of P/PR waveform looping is related to tin
electrodeposits as a lead-free solder. We previously demonstrated
that various P/PR waveforms vield either tensile or compressive
internal stress as well as different magnitudes of said stress.™
Since intermal stress is attributed to whisker growth in lead-free
tin solders, we investigated several P/PR waveform sequences to
generate layvered tin deposits with different types and magnitudes
of internal stress. ™ Preliminary data from thermal eyeling indicate
that depositing successive layers of different internal stress is a
promising approach for mitigation of whisker growth in tin elec-
trodeposits.

In a totally different application of F'PR electrodeposition, we
demonstrated the feasibility of preparing platinum electrocatal ysts
for fuel cell gas diffusion electrodes, ™ Using the FYPR process
we demonstrated the ability to form 3 to 4-nm catalyst particles

with improved performance and the same loading of convention-
ally prepared clectrocatalysts,™ Another PAPR application we are
exploring is the fabrication of three-dimensional structures for
microelectromechanical systems (MEMS).*

Thus far, | have described electrodeposition of metals from a
plating bath containing ions of said metal. More recently, we are
exploring the electrophoretic deposition of mixed oxides, specifi-
cally yittria-stabilized zirconia. We are investigating electropho-
retic deposition of mixed oxides for applications such as thermal
barrier coatings for turbine engines or vamctor devices for RF
filters, which are currently deposited using thermal spray or pulsed
laser deposition, respectively. Electrophoretic deposition offers the
benefits of speed and the ability to coat contoured surfaces. We are
ohserving bencfits of PIPR electrophoretic deposition and the abil-
ity to control coating morphology as shown in Fig. 1141424
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P/PR anodic (electropolishing, electrodeburring,
electroetching) processes

Figure 12 depicts a generalized P/PR electrolysis waveform for
electropolishing, electrodeburring and electroetching applications
where the “forward” cyele is shown as anodic, the “reverse” cycle
is shown as cathodic and the net process is anodic. For P/PR elec-
trolysis anodic applications, we tune the reverse cycle to remove
surface oxides for certain materials and alloys in order to “activate™
the surface for the anodic cycle.* In addition to activating the sur-
face, we tune the waveform using the concepts of electrodynamic
boundary laver and macro-and microprofiles to focus the current
distribution for electropolishing, electrodeburring and electroetch-
ing applications.

In Fig. 13, we present several exemplary electrodeburring appli-
cations using P/PR electrolysis. The planetary gear is made from
tool steel and there was no need for a reverse cycle to remove the
oxide and “activate” the surface. However, the blade was made
from stainless steel and a reverse cycle was used.™ In Fig. 14, we
present a P/PR application that we are developing for removing
maolehills and radivsing leading/trailing edges of an agrospace inte-
grally-bladed rotor. Of particular note is that by proper selection of
the F/PR. waveform parameters, we can achieve a radius, taper or
nearly complete removal of artifacts resulting from prior process-
ing. The materials investigated to date include nickel and titanium
based alloys.*

In Fig. 15, we present several P/PR electropolishing applications
related o various stainless steel parts.™ An important consideration
during P/PR electropolishing applications is that at the beginning
of the process, the boundary layer may represent a macroprofile
but as electropolishing continues a microprofile may evolve. To
compensate for this change from macroprofile to microprofile, we
use a sequence of F/PR waveforms to continue the electropolish-
ing to the desired surface finish.*® We are currently investigating
additional FYPR electrolysis applications related to small parts and
medical devices. *™ Another application involves using P/PR. elec-
trolysis to prepare or “activate” a passive surface for subsequent
clectrodeposition, ™!

In Fig. 16, we present an example of F/PR electroetching
through a mask on a substrate. /PR electroetching applications
include substmtes consisting of a metal layer on a non-conductive
layer {electronic packages)™ or substrates consisting solely of a
metal laver (bipolar plates, microchannel reactors, microfluidic
devices, cooling channels and the like). By tuning the P'PR wave-
form to focus the electric field, we minimize the mask undercut
associated with isotropic nature of the chemical etching process.™
We are exploring other applications of P/FR electrolysis including
removal of sacrificial cores for internal channels™*® and removal of
excess metal plating for semiconductor applications.™
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Pulsed-assisted ion exchange

In Fig. 17, we present a schematic representation of pulsed assisted
ion exchange for the treatment and regeneration of metal finishing
process streams. ¥ Pulsed assisted ion exchange addresses several
key limitations associated with traditional fon exchange. During
the treatment cycle, the pulsed electric field enhances the ionic
transport to the anion and cation exchange resin beds. During the
regeneration cycle, the pulsed electric field enhances the regenera-
tion of the anion and cation resin beds without the need for strong
acid or base process streams.™ Although illustrated for copper rinse
waters, we believe pulsed-assisted ion exchange is applicable to a
wide range of process streams related 1o the surface finishing and
nuclear industries.

Concluding remarks

My hope is that our collective body of work provides the basis for
continued innovation related to the application of P/PR electroly-
515 to the clectrochemical arts, | strongly believe that although our
innovations to date are significant, we have only exposed the tip of
the iceberg of possibilities related to PIPR electrolysis. In addition,
I recommend that we as scientists, technologists and researchers
continue to revisit and test our assumptions. Additionally, 1 submit
that the patent literature is a valuable source of technical informa-
tion and should be reviewed just as more (raditional sources of
technical information are consulted. Finally, | strongly encourage
the use of collaborative teams where all viewpoints and ideas are
considered in order to encourage creative thinking and innova-
tion,
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Fipeire 16— PIPR throngh-mask eleciroetching,

Figure 14—PPR electrolysis applied o aeraspace componenis,

Figure 15— P/PR electropPolishing of stainless slecl components,
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